(Also see MANIFESTO OF TRIADIC REALITY below.)

#
QUANTIZED REALITY APPLYING CLOSE’S CALCULUS OF
DISTINCTIONS VERSUS THE CALCULUS OF NEWTON (PART 19)

##
Our unified reality

Prior to this research, the conventional view had been that the
quantal reality was very different from the macroscopic reality. In this and
related work, we have shown we have one reality as the microcosm does not
fundamentally differ from the macrocosm.

**In general, there is no mathematical or dimensionometric difference between the ‘microcosm’ of elementary particles and the macrocosms of molecules, human beings, planets, solar systems, and galaxies.***Every structure in the universe, including the entire universe itself, is a quantum structure obeying the same laws of space, time and consciousness*##
Our quantized reality: The Calculus of
Distinctions versus Newtonian Calculus.

*Applying the process of rotation and unitary projection from dimension to dimension in Euclidean space, we find that the mathematical structure of basic number theory requires the existence of nine finite orthogonal dimensions embedded successively in an infinitely continuous substrate.*

We utilize the logic of the Calculus of Dimensional Distinctions

^{10}, an application and extension of George Spencer Brown’s Laws of Form^{53}. In this paper, we demonstrate that LHC particle-collider mass/energy data for electrons, protons and neutrons, can be considered as spinning “distinctions of content”. These occupy unitary “distinctions of extent”.
In the 3S-1t dimensional domain of our physical observations, we find
that the light-speed limitation of Einstein’s special relativity and Planck’s
quantization of mass and energy define a minimal unitary quantized distinction.

^{55}^{; }^{83}^{; }^{88}^{; }^{89}^{; }^{113}^{; }^{114}This minimal mass/energy, space-time distinction is the smallest possible finite building block of the 3S-1t universe. As such, the Calculus of Dimensional Distinctions^{10}replaces the infinitesimal of the differential calculus of Newton and Leibniz^{10}in the mathematical analysis of physical reality. The Calculus of Dimensional Distinctions provides us with the tool needed to extend the work of Minkowski, Einstein, Kaluza, Klein, Pauli, and others such as Rauscher^{115}, who have attempted to use multi-dimensional analysis to integrate and explain the laws of physics.^{13}^{; }^{115}^{; }^{116}^{}

The process of rotation and unitary orthogonal projection from
one dimension to the next in Euclidean space utilizes an extension of the
Pythagorean Theorem. Generalization of the Pythagorean Theorem equation to
three dimensions and application to the minimal quantized distinctions of
extent and content produces a set of Diophantine expressions that perfectly
describe the combination of elementary particles.

Integer solutions of these equations represent stable, symmetric
combinations of elementary particles. But when there are no integer solutions,
the expressions are inequalities representing unstable combinations that decay
quickly.

**Fermat’s Last Theorem and why three not two particles are required**

Fermat’s Last Theorem

^{15-17}applied to the Diophantine equation describing the combination of*two elementary*particles tells us that there are no integer solutions, and thus no stable combinations. The equation for the combination of three particles, on the other hand, does have integer solutions. This explains why three quarks, not two, combine to form protons and neutrons. This explains why we need a third substance, which by definition is mass-less and energy-less, and which we call gimmel and, we postulate, involves a significant amount of “consciousness”, because there is no other legitimate option.**Revisiting Diophantine Triplets: Fermat’s Last Theorem or the Conveyance Equation?**

Perusal of our
Tables pertaining to TRUE units and gimmel, may lead to a question about
Diophantine triplets. When examining these tables from right to left, we see
that mass-energy scores have been unified, and then there are gimmel scores.
This totals to TRUE units scores and volumetric equivalents. But there are only
two variables on the right side of the equation not three. How does this
resolve three sets of Diophantine cubes? The answer is that the cube analysis
is done analyzing downwards the sum of the cubes of the three variables,
electrons, protons and neutrons.

The protons and
neutrons, of course, are subdivided into the two up-quarks and one down-quark
of each proton, and the one up-quark and two down-quarks in each individual neutron
of the specific element, radical, molecule and compound. Therefore, the
calculations for protons and neutrons are, as indicated, based on triads of
three quarks each. However, we still apply only one electron in these analyses.

NEXT: FURTHER IMPLICATIONS

## No comments:

## Post a Comment