Saturday, January 3, 2015

THE BUILDING BLOCKS OF THE UNIVERSE IN TRUE UNITS


The Building Blocks of the Elements in TRUE Units
Particle
Charge
Mass/Energy
ג
Total TRUE Units*
Volume
e
- 3
1
105**
106
1,191,016
P+
+ 2
17
7
24
13,824
N0
- 1
22
16
38
46,656
* Whether mass, energy or gimmel (ג), upon measurement, each TRUE unit occupies the same volume, i.e. the minimal volume for an elementary particle as a spinning object, as required by relativity and defined in TDVP as the basic unit of volume. Each TRUE unit is capable of contributing to the structure of physical reality as m, E or ג to form a particle, according to the logical pattern in the substrate reflected in the Conveyance Equation, and the relative volume of each particle (in the three dimensions of space) is equal to the total number of TRUE units cubed times the shape factor. As noted before, the shape factor cancels out in the Conveyance Equation. For this reason, the right-hand column in these tables contains cubed integer amounts representing the Minimum Relative Equivalence Volume (MREV) for each particle making up the combination of sub-atomic particles.
**The TRUE unit values for the elementary particles are uniquely determined by conditions necessary for a stable universe. The values for up- and down-quarks are the necessary values for the proton and neutron, as determined above, and the number of ג units and the total TRUE units for the electron are determined by calculating the ג units necessary to form a stable Helium atom. They also determine the smallest possible stable atoms, Hydrogen, Deuterium and Tritium, as shown below.

THE SECONDARY LEVEL OF SYMMETRIC STABILITY – ATOMS
Atoms are semi-stable structures composed of electrons, protons and neutrons. They are not as stable as protons and neutrons, but they are generally more stable than molecules.
The Elements of the Periodic Table
The Hydrogen atom is unique among the natural elements in that it has only two mass/energy components, the electron and proton. Thus, because Fermat’s Last Theorem prohibits the symmetrical combination of two symmetrical particles; they cannot combine to form stable structures like the combination of quarks to form the proton and neutron. The electron, with a small fraction of the mass of the proton, is drawn by electric charge to whirl around the proton, seeking stability.  This means that the Hydrogen atom, the elemental building block of the universe, composed only of the mass and energy of an electron and a proton, is inherently unstable. So why is it that we have any stable structures at all; why is there a universe? As Leibniz queried: “why is there something rather than nothing”?

One of the Xn integers must be 24 to represent the TRUE unit value of the proton, and among the integer solutions of the m = n = 3 conveyance equation listed above there are four solutions with 24 as one of the Xn solution integers. Nature is parsimonious, and we must never make a mathematical description or demonstration any more complicated than it has to be. Therefore, we start with the smallest solution with 24 as one of the Xn integers. It is 33 + 183 + 243 = 273. But it does not contain an Xn equal to 38, so we must continue, searching for an integer solution that contains both 24 and 38 on the left side of the equation.  Since there are no smaller integer solutions with co-multiples of 24 and 38 as terms in the left side of the equation, we can use the solution that provided a stable Helium atom: 243 + 383 + 1063 = 1083. Using it to represent the Hydrogen atom, we have:
TRUE-Unit Analysis for Hydrogen 1 (Protium), Valence = - 2 + 1 = -1
Particle
Charge
Mass/Energy
ג
Total TRUE Units
Volume
e
- 3
1
105
106
1,191,016
P+
+ 3
17
7
24
13,824
   Cג*
0
0
38
38
54,872
Totals
0
18
150
168
1,259,712=1083








* Since the Proton required 17 mass/energy units and 7 ג units, adding up to 24 Total TRUE units, to achieve triadic stability (see the Tables describing the Proton), to achieve the same level of stability as the proton and neutron, the Hydrogen atom must have a third additive component, Cג, consisting of 38 ג units, the third form of the ‘stuff’ of reality, not measureable as mass or energy in 3S-1t. This satisfies the conveyance equation and produces a stable Hydrogen atom with a total volume of 1083.
Without the ג units needed by Hydrogen to achieve stability, we would have no universe. The TRUE units of two symmetrically stable entities, the electron and proton, could not combine to form a third symmetrically stable entity (Fermat’s Last Theorem). Because of the asymmetry of their form as two symmetric entities of different sizes in TRUE units, they could not combine; they would spiral and be easily separated by any external force. Even if they could adhere to other particles, the resulting universe would be very boring. All multiples of such a building block would have the same chemical characteristics. With the input of the appropriate number of ג units, Hydrogen is a basic building block of symmetrically stable forms in the 3S–1t observable domain of the physical universe.
In 3S-1t, TRUE units can manifest as mass, energy or ג, in order to form symmetrically stable particles and the 168 total TRUE units of the Hydrogen atom may be arranged in another stable structural form, observed as the simple combination of one electron, one proton and one neutron, known as Deuterium, an isotope of Hydrogen (an atom with the same chemical properties).
Hydrogen 2 (Deuterium), Valence = -2 + 1 = -1
Particle
Charge
Mass/Energy
ג
Total TRUE Units
Volume
e
- 3
1
105
106
1,191,016
P+
+ 3
17
7
24
13,824
N0
0
22
16
38
46,656
Totals
0
40
128
168
(108)3

Hydrogen 2 (H2) is held together by electrical charge and 128 ג units, 22 less than the H1 atom. This means that H2 is not as stable as H1. What about other isotopes of H1? Is it possible that the TRUE units of a Hydrogen atom or a Deuterium atom can combine with one or more additional neutrons to form stable isotopes? Hydrogen 3 (H3), known as Tritium, is a second isotope of Hydrogen. Its form in TRUE units is represented below.

Hydrogen 3 (Tritium), Valence = - 2 + 1 = -1
Particle
Charge
Mass/Energy
ג
Total TRUE Units
Volume
e
- 3
1
105
106
1,191,016
       P+   
+ 3
17
7
24
13,824
2N0
0
44
32
76
438,976
Totals
0
62
144
206
(118.018…)3 *
*We see that H3 is an asymmetric structure. One electron, one proton and two neutrons, brought together by attractive forces, cannot combine volumetrically to form a symmetrically stable structure, and as a result, it is unstable and there are very few H3 atoms. Looking at the TRUE unit structure for H1, H2 and H3, we see that all three are bonded by electrical charge, but H1 has volumetric stability and 150 ג units holding it together; H2 has volumetric stability, more mass/energy units and fewer ג units than H1; and H3 has more mass/energy units and ג units, but no volumetric stability. This explains why H1 is the most abundant, H2 less abundant, and H3 correspondingly less stable. The atomic weights of the elements of the periodic table, in amu (atomic mass units), are actually the mean values of atomic masses calculated from a great number of samples. The accepted mean atomic weight for Hydrogen to four significant figures is 1.008. This includes H1 and all isotopes of Hydrogen. If all hydrogen atoms were H1 atoms, this number would be exactly 1. H1 is by far the most stable, and therefore, most abundant, of the Hydrogen family, making up more than 99.99% of all Hydrogen in the universe. Other H isotopes make up the remaining 0.01%, mostly H2, with H3 and other isotopes heavier than H2 occurring only rarely in trace amounts.

TO COME: The Three Levels of Stability, Summaries of TRUE Analyses, and Conclusions.

No comments:

Post a Comment